The Industrial Phase-Transfer Catalysis Experts

PTC Tip of the Month E-Newsletter

PTC Reaction of the Month - December 2024

Solid-Liquid PTC Esterification

By Marc Halpern, the leading expert in industrial phase-transfer catalysis.

A solid-liquid PTC esterification of methacrylic acid was performed in two consecutive steps in one pot.

First, potassium methacrylate was formed from potassium carbonate and methacrylic acid in the presence of BHT stabilizer and dried with azeotropic removal of water and generation of carbon dioxide from the carbonate and water.

In the second step, without isolation of the intermediate methacrylate salt, the phase-transfer catalyst was added which was only 2.3 mole% tetrabutylphosphonium chloride. The phosphonium quat may have been chosen due to the relatively high temperature of refluxing toluene that would likely have decomposed the less expensive quaternary ammonium phase-transfer catalysts.

The water-sensitive 3-chloropropyldimethylethoxysilane was added and the esterification proceeded at reflux for 3 hours. The KCl salt byproduct was removed by filtration and the product was purified by wiped film evaporation. The yield was 66.2%.

The procedure reported was as follows: A 2 L 4-neck flask was equipped with a mechanical stirrer, heating mantle, addition funnel, pot thermal probe, fritted glass dispersion tube and Dean-Stark trap with water-cooled condenser. Di-t-butylhydroxytoluene (BHT) (4.19 g, 3.50 wt %) and toluene (960 g) were charged to the reactor. Stirring was initiated and potassium carbonate (109.1 g, 7.67 mol) was added. The slurry was heated to 80° C. with an O2/Ar sparge and then methacrylic acid (119.9 g, 1.40 mol) was added dropwise at 100° C. over 2 hours. Carbon dioxide gas evolution was observed, and water was removed by the Dean-Stark trap under refluxing conditions. An azeotrope was observed starting at 90° C. After removing all water byproduct, tetrabutylphosphonium chloride (50% in toluene) (29.5 g, 0.031 mol) and 3-chloropropyldimethylethoxysilane (240.0 g, 1.33 mol) were added to the flask. The reaction mixture was heated at reflux for 3 hours and then cooled to room temperature. The reaction mixture was filtered. The filtrate was concentrated in vacuo and 5 wt % phenothiazine was added. The product was then purified by wiped film evaporation at 0.6-0.7 mmHg vacuum, with a 64-5° C. jacket temperature and a cold finger temperature of 30° C. with a product:residue split of 4:1 to afford the final product, 3-methacryloxypropyldimethylethoxysilane, as a clear colorless liquid (202.6 g, 66.2%).


About Marc Halpern

Marc Halpern

Dr. Halpern is founder and president of PTC Organics, Inc., the only company dedicated exclusively to developing low-cost high-performance green chemistry processes for the manufacture of organic chemicals using Phase Transfer Catalysis. Dr. Halpern has innovated PTC breakthroughs for pharmaceuticals, agrochemicals, petrochemicals, monomers, polymers, flavors & fragrances, dyes & pigments and solvents. Dr. Halpern has provided PTC services on-site at more than 260 industrial process R&D departments in 37 countries and has helped chemical companies save > $200 million. Dr. Halpern co-authored five books including the best-selling “Phase-Transfer Catalysis: Fundamentals, Applications and Industrial Perspectives” and has presented the 2-day course “Practical Phase-Transfer Catalysis” at 50 locations in the US, Europe and Asia.

Dr. Halpern founded the journal “Industrial Phase-Transfer Catalysis” and “The PTC Tip of the Month” enjoyed by 2,100 qualified subscribers, now beyond 130 issues. In 2014, Dr. Halpern is celebrating his 30th year in the chemical industry, including serving as a process chemist at Dow Chemical, a supervisor of process chemistry at ICI, Director of R&D at Sybron Chemicals and founder and president of PTC Organics Inc. (15 years) and PTC Communications Inc. (20 years). Dr. Halpern also co-founded PTC Interface Inc. in 1989 and PTC Value Recovery Inc. in 1999. His academic breakthroughs include the PTC pKa Guidelines, the q-value for quat accessibility and he has achieved industrial PTC breakthroughs for a dozen strong base reactions as well as esterifications, transesterifications, epoxidations and chloromethylations plus contributed to more than 100 other industrial PTC process development projects.

Dr. Halpern has dedicated his adult life to his family and to phase-transfer catalysis (in that order!).

Leave a Reply

Your email address will not be published. Required fields are marked *

PTC Course - In-House

Learn to choose
PTC process conditions
LIKE AN EXPERT!

Learn More